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AN ANALYSTS OF THE TRANSITION OF A HELTCOPTER FROM
HOVERING TO STEADY AUTOROTATIVE VERTICAL DESCENT

By A. A. Nikolgky and Edward Seckel
SUMMARY

An analytical study is presented of the tramnsitien from hovering
flight (power on) to steady vertical descent (in autorotation) following
power failure while hovering. The effects of hinging the blades, of blade -
- moment of inertla, and of rapldity of pitch reduction after power fallure
are 1lnvestigated. T

The results indicate that the effect of blade flapping is negligible
as far as the establishment of steady autorotation is concerned. From
the standpoint of avoiding excesslive blade stelling during the transition,
it is desirable that the blade pitch be reduced as rapidly as possible
after power fallure, and that the blade moment of Inertia be large.

Sample calculations and graphs of computed transitions for a typical
helicopter are presented.

INTRODUCTION

This report is the second phase of a broad program of study of the
translent motions of helicopters in autorotative flight. The first
phase (reference 1) dealt with the steady-state condition of autorotative
vertical descent. This report 1s concerned with the transition from the
gsteady condition of hovering to tlie steady autorotative descent.

It has long been realized that the ability of a helicopter to
egtablish steady autorotation followling power fallure would be an
important safety feature. Although some hellicopters have successfully
demonstrated such an ability, there has been no analytical method avail-
able for amsessing the influence of the design varlables on the ease and
safety of performing such a maneuver.

Such a method, based on numerical integration of the equations of
motion, 18 presented in this report.
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#

Validity of the analysis presented here 18 limited to cases where
blade stalling can be neglected throughout the maneuver, and therefore
where the rotor is in no danger of stopping. Nevertheless the investi-
gation ig sufficlent to indicate the effects of certain important
variables.

This work was conducted at Princeton University under the sponsor-
ship and with the financlal assistance of the Natlonal Advisory Committee
for Aeronautics.

SYMBOLS

Physical Quantities

W gross welght of helicopter, poumds

b number of blades per rotor

R blade radius, feet

r radial dlstance to blade element, feet
c blade-section chord, feet

R
cre 4r
vo_

equivalent blade chord, feet |c

e e~ TnR
re dr
0
beg
o rotor solidity ratio =
8 blade-section pitch angle from zero lift,
radiang unless otherwlse stated
Iy mass moment of inertia of blade about flapping
hinge, slug-feet2
o] mass density of air, slugs per cubic foot
t time, seconds

g acceleration of gravity (32.2 ft/sec?)
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Velocities
v true airspeed of helicopter along flight path,
feet per second
Vi vertical component of V (positive down, as
in descent
Y/ rotor angular velocity, radians per second
v induced velocity at rotor (always positive),
feet per second
A inflow ratio (assuming v constant over the
VvV, - v
disk) (_l".___>
QR
Blade-Element Aerodynamic Characteristics
Cdo section profile-drag coefficient
Cq ! Cdy corrected for friction torque, auxiliary
o .
mechanisms, and so forth
60,80',61,62 coefficients In power series for cq, as a
function of angle of attack
= 8y + + 80,2
(Gdo o * B1%y 2“::-)
“or
c, '=28."+08a +5a?
ds 0 1r 2°r
Acdo,A@O Increment in Cd, to account for friction

torque, and so forth
(Acdo = Cdo' - C3, = Adg = Bp' - 80>

a slope of lift curve, per radian



NACA TN 1907

Rotor Aerodynamic Characteristics

8y,858,8,

by,bp,bs

B1,Bp,B3,B),,B5,B4,B,

Iy , %, M
Subscripts:
0

f

At

rotor thrust, pounds

rotor torque, pound-feet

#
torque coefficient (?Q =3—-i§§__.é)
PR (QR)

Rotor-Blade Motion

flapping angle, radians unless otherwise noted

. Miscellaneous

decay constant 1n assumed variation of
induced velocity with time

congtants in expression for 6 as a function
of time; Ay and A, 1n radians unless

otherwise noted

coefficients in differentlal equation
for B(%)

coefficients in complete solution for B(t),
radians unless otherwise noted

decay constants in expression for B(t)

initlal value, for hovering

final value, for steady autorotative vertical
descent

average value (( )a = %[} )O +( )£]>

value after time interval of At seconds
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ANALYSTS

It is agsumed that the initial steady state of hovering flight is
entirely determined, and the physical quantities of this hovering
condition are denoted by the subscript O. In*the final state of
steady autorotative descent, the subscript f is used to denote the
physical quantities.

The simultaneous differential equations governing the transition
period are six in number:

(1) For the vertical acceleration of the craft, with the rotor
thrust a function of Q, V, v, B, B, 6, and so forth

e

(2) For the angular acceleration of the rotor, with the rotor
"torque a function of &, V, v, and so forth.

(3) For the flapping motion of the blades.
(4) For the hunting motion of the blades.

(5) For the induced velocity v as a function of T, V, V, and
go forth (unsteady flow).

(6) For the angle of incidence 6 as a function of the flapping
and lag angles.

There is as yet neither theory nor empirical data on which to base
the fifth of the above equations. For convenience, it is assumed that
the induced velocity v varies with time after power failure according to

Vo= vp 4 (vb - vT>e_kt (1)

where the value of the decay coefficient k is arbitrary and may be
‘assigned different values in order to investigate its importance. It
may be anticipated that the effect of the approximation represented by
equation (1) is small, end that the. value of k chosen is not critical,
when the Initial end final values of induced velocity are not widely
different, as in the usual case. The induced velocity.is considered to
be constant over the rotor disk. While exponential variation of
induced velocity (equation (1)) represents a convenient assumption, it
is not unlikely that the actual varistion would be somewhat different.
Verification of the supposition that the effect is small, must, failing
a theoretical approach, await experimental evidence.
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It 1s assumed,ﬁhat the angle of incldence varies with time
exponentially, and according to

0 =0y +age 10 4 a2 (2)

where A, A,, &, and a, are arbitrary, except that

A+ A, =6,-6, (2a)

The changes in incldence due to flapping or hunting are thus
combined with whatever changes the pllot may make manually. 3By sultably
choosing the constants, Ay, A,, &,, and a,, rapid or slow pltch reduc-

tlons after power fallure may be investigated. Thus, the necessity of
solving the fourth, fifth, and sixth of the basic equations is obviated,
by the agsumptions represented by equations (1) and (2), and the problem
simplified enormously.

It may further be anticipated that the variation of B with time
will be of minor importance both to the designer and in its effect on
the variations of V and § with time. For the analysis of flapping
angle 1t 1s therefore assumed that, in the trsnsient period, Q& 1s a

congtant and has the value of the average between QO and Qf. This

average value 1s denoted by .

In the following analysls only untwlsted and untapered blades are
consldered. The equations developed on this basis cen probably"be
applied to any blades, with falr accuracy, by using equivalent chord
and angle of incidence.

Solution for B

The equation for the vertical acceleration of the helicopter may
then be written as

3q 2 .
T-g- pbacR-Q, (? -v_ B 4 Q) (3)
N 0.R 30, 3

g
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and the equation for the transient flapping motion is

k2

o pacR™( - :
ORE - I

Solving equation (4) for V, differentiating for {7, and
substituting in equation (3) gives

AR 30 2
v e paCR Qa 3 R p&bCR Qa (:))
B+blﬁ+beé+bsﬁ=bu+’?f;‘(‘“ﬂﬂa“*—mﬁfg—" ‘
where
pacR3Q foxt
a(R 1

b = 2T, (1? * 2RW/g>

pacR3Qa( o . pabcR%%
a

by B ——— - S
2 6L L84 /g
pa.bcREQa?’
b3 = —
/g
gpacR3ﬂa
bl; = 8
61,

The transient solution of equation (5) is of the form

mt ot
B =3Be + e (Becosu)t+B

1 - sin wt) (6)

3
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where the roots of
o+ b1m2 +bym + by =0 ('()
are
nEn
D=t J{D‘— (7a)
where

3=\-1

The steady-state solutions have the same form as the forcing

functions, and together must satlsfy equation (5). Thus the steady-
gtate solutions are:

~kt -aqt ~ant *
B =B, +Bge +B6e1+}3e,2

where, by substitution Into equation (5) and equating coefficients of
identlical terms,

By, = Bs (8a)
pacR3Q k(ve - 5
5 61, : 3 2 ) (8v)
(k - blk + 'b2k - b3> .
3 3 pab,CR39a2
] ﬁ)acR 2, HQaRAlal T Tieila Te Al (86)

B, =
6 ) ,
\ 6Il &13 - bl&l + 'b2al - b3
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39 pabcR3Qa?
R - ————————
5 - padR3Qa faRfcay 48 /g Ay
T 61, 53 - bjaf + bya, - b

(8d)

The initial conditlions, which must be satisfied by the complete

gsolution for B(t), are that, at t = 0,

B = By

2
5 _ B - padR%Qo (?o -V + fé) - B.0.2
- r0 "~ 0
2T, 200R b 0

Therefore, from equations (9),

B, + 32 + Bh_+ B5 + B6 + B = BO

1 T

nﬁBl + a52 + m33 - k‘B5 - aiB6 - a2B7 =0
2 2 e
nigBl + (m -a)>B2 + 2ma:B3 + k2B5 + 81256 + a22.B7 = BO

Equations (10), (10a), end (10b) can be solved for B,, B,,

and B3, when B) through By have been found by equations (8).

complete solution, then, is

m.t at
- 1
B(t) = Ble + e (Be cos wbt + B3 sin wt) +

' -kt -ayt -ast
+
Bh + B5e + B6e B7e

(9)

(9a)

(9b)

(10)

(10a)

(10b)

The

(11)
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Solution for Q@ and V

The remaining two variables are V(t) and Q(t). The equations to
be solved are the thrust and torque equations:

V=g - DabcR?’Cr _@Q . Q{f) (12)
2ifg \ 2R © 3 "3
and
. _ pcRltg? 2, £of3 + 8" | opo
9:-55;——2——-5(1‘3-1’1%) - - J+ T (13)
where
fl = g =~ 62
f, =0 - B/a
f3=a B/o + B + by

and B(t) 1s known approximately from equation (11).

Equations (12) and (13) can be solved by a tabular, step-by-step
process as outlined below.

A sample calculation has been performed (fig. 1), by the step-by-
step process, comparing the results obtalned by including and neglecting
the B terms in equations (12) and (13). Reference to the figure will
show that the effect of flapping is negligible on the variations of q(t)
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and V(t). The flapping terms are therefore neglected in the following
development of the step-by-step method of solving equations (12)

and (13). In effect, then, only rigid blades are considered, although
the effects of blad.e flapping would be negligible.

Equations (12) and (13)/ then become

. bRV - v o
7 = g - REPCRY Q 9—) (128)
owf/g \ 2R 3
and
hlg - & 1 - 68(a - 25,
cR 2
oT. 2
1
LS + 5 92
8, 5,0 o0 92 (13a)

L

By differentiating equation (13a),

5 - (a-S
3R

2)[9(v v) + oV - v)] +

5 pcRb“ka
2:[1

2y - (T - 7 -
LRQ v v

. 2
- H
e(a 262) B,' + 8,0 + 80
22y - ) -
3R 2

YA 2
Q0 - u(ﬁl + 29599
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At zero time (the instant of power failure) all the gquantities in
the above equations (12a), (13a), and (14) are known. The step-by-step
process 1is started by computing from these the values of Vo> Qo s

and @ 0° After a short interval of time, say At seconds, the new value

of rotor angular veloclty @ may be found approximately from the

At
abbreviated Taylor series:

o

- SR A1) B 1
Qug = Qg + (A6)Q + =20 (15)

It 1s assumed that the change In V in the period At is the
time At +times the average rate of change of V in the time
interval At. Thus,

. _ A,b » -
T = Vo _é_(vo + VA,G> (16)
From equation (12a),
. 3la
pabcR- | AL
Vot = 8 gw/g (vAt - "’At) ] (17)

Solving equations (16) and (17) simultaneously for V £ (the unknowns

AN
being VA’G and VA‘b)’
sber3 (At L Ot , Ot 2
; - W]tz (0 * B0 < ) * 30 |
Vat = (18)
At
1 + At pabc]RgQ
8ifg At
whence V may be found from equation (16) .

At
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Now Qﬁt may be‘computed from equation (13a) and the approximate

value of Qug from equation (15) checked by
= AL ¢ ¢
By = %+ ?(% + .QA.b) (19)

Tf this does not check guite closely the value first obtained from
equation (15), and used in equation (18), a trial-and-error process can

be used to find %&t In this case, a value of N would be assumed,

in place of equation (15), used in equation (18), and then checked
by equation (19). Good agreement should be achieved before the process
is repeated for the next interval. Experience has shown that

for At = % second, the first estimate furnished by equation (15) is

usually checked quite closely (within 0.05 radian/sec) by equation (19).

This process 1s repeated for as many intervals of time as are
necessary for Q and V to reach their final steady values in steady
autorotation.

A running check can be kept on the approach to the instability
caused by excessive blade stalling (see reference 1) by computing the
value of the iInflow ratio A at every interval of time, and spotting A
eand 6 on curves of Q against A and 6, in which the effect of
blade stall has been included, as in flgure 3 of reference 1. The value
of A 1is’'given by

3\ = (V.- v) (20)

QR

Long before the "second, unstable trim point" (described in
reference 1) is approached, however, it would be necessary to use
modified equations (12a) and (13a), altered to include the effects of
blade stalling. In this case, the trick represented by equation (15)
to 1lmprove the convergence of the gtep-by-step process would be exces-
gively complex to apply. The trial-end-error process necessary to ,
carry out the numerical integration of the new equations (12a) and (13a)
would be arduous at each interval of time, and, for adequate accuracy,

he time intervals would have to be much more frequent.
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A SAMPLE DESIGN STUDIED

Using the methods described in the preceding section, the tran-
sitions from hovering to steady autorotation have been computed for a
helicopter with the following physical characteristics:

W = 2700 pounds c = 1.25 feet

b=3 a = 5.6 per radian,

R = 20 feet cg,' = 0.0087 - 0.0216ay. + 0400w,
I, = 100, 200, 400 slug-feet?

This sample design is the same as was considered in reference 1, for
which the steady autorotative characteristics were computed.

The initial hovering state considered 1s

Vb =0 Vo = 21 .25 feet per second
Qp = 25.1 radians per second 8y = 7.25° = Q.1265 radian

For transitions in which the pitch is reduced after power fallure,
the Tinal setate considered is ’

v 25.1 feet per second

f

31.2 feet per second

<
Hy
I

4° = 0.0698 radian

20.8 radians per second 05

fp

For transitions in which the pitch is not reduced, the final steady
state is taken as ’

26,4 feet per smecond

]

= 30.5 feet per second Ve

Hy
!

16.5 radians per second 0, 7.25° = 0.1265 radian

v
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The various ways in which the pitch is changed, for this investi-
gation, are illustrated in figure 2. The different curves correspond

to different values of the constants A, A,, &), and a, (equation (2))-

The variations of induced velocity with time, glven by equation (1),
are illustrated in figure 3, for k = 1, and, In the cases of pitch
reduction after power failure, for k = o.

RESULTS AND DISCUSSION
Probable Effect of Agsuming the Variation of

Induced Velocity with Time

A typicel variation of descending velocity V and rotor angular
velocity O with time after power failure is 1llustrated in figure L.
These calculations were made by the step-by-step process given in the
section entitled "Solution for @ and V," neglecting flapping. Two
calculations were made, for k = 1.0 and «, in order to evaluate the
importance of k.

Since, in the usual case, the initial and final values for the
induced velocity are not very different, it seems intuitively evident
that the exact variation of v(t) ought not to affect the variations
of V(t) end (1) appreciebly. This is confirmed by figure k,
where V(t) and @(t) are compared for the widely different values
of k, representing the variations.of v(t) shown in figure 3.

It may be observed that, if the induced velocity varied in such a
manner that its value was not always between the initial and final
values, then it might be important to consider the actual variation.
In that case, v(t) would have to be determined from experiment. Tt
should be remarked that, in the solution for (t) and V(%) Just
referred to, any suitable variation of v(t) may be assumed. The
exponential variation was convenient in the analytical solution
for B(t).

Interpretation of the Different Rates of Pitch
Change Considered

The extremes of the types of pitch change considered are the upper-
nost and lowermost curves of figure 2, representing no pitch change and
instantaneous pltch reduction at the Instant of power failure. The case
of no pitch change could occur with rigid blades (or hinged Pblades so
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articulated that a change in lag angle would not change the incidence)
i1f the pillot failed to alter the pitch menuslly. The instantanecus
pitch change could be approached by a rotor having articulated blades
with no damping about the drag hinge. In this case, the change in lag
angle would be very rapid, and any attendant change of incidence could
be considered practically instantaneous. The intermediate, exponential
types of pitch change could each occur, for articulated blades, with an
Infinite number of combinations of pilot reasction and degrees of damping
about the drag hinge. The more gradual changes are assoclated with
slower pilot resction and greater demping about the drag hinge. For
rigid blades, the curves represent only different pilot reactlons.

Variations of Flapping Angle $ with Time After

Power Faillure

The influence of the different rates of pltch chenge, and of blade
moment of inertia, on the varlation of flapping angle B with time is
given in figure 5. These calculations were made by the method of
equation (11), using the induced-velocity decay coefficient k equal
to wnity.

The variations of B(t) shown in figure 5 are of passing interest
only, since the effects of blade flapping are of no importance in the
variations of V(t) and O(t). In epite of the linearizing assumption
in the solution for B(t) +that € is constant, figure 5 probably
gives a good indlcation of stop-settings requlred on the flapping hinge
to allow the blades complete freedom in this maneuver. The final values
of B are different for the case of no pitch change and the cases of

pitch reduction because the final values of Q are not the same.

Effect of Blade Flapping on V(t) and ¢t)

Comparison (fig. 1) of two computations of V(t). and q(t), for
instantaneous pitch change, shows that the effect of blade flapping is
negligible. The case of instantaneous pitch change was chosen for this
comparison, since the variations of P are greatest for this

case (fig. 5). If the flapping hinge is so directed that a change

in B causes a change in incidence, then in equation (2) for o(t)
the influence of flapping must be considered. The value of k was
taken to be wnity.
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Influence of Rate of Pitch Reduction and Blade
Moment of Tnertia on V(t) and Q%)

The intluence of rate of pitch change and blade moment of inertila
on the variation of flapping angle with time is shown in figure 5; the
effect of blade moment of inertia on V(t) and t) is shown in
figure 6. It may be considered that the average time required to
effect the transition for the cases considered is about 6 seconds.
With regard to avoiding the Instability caused by blade stalling at
high values of A (see the study of stability of autorotation,
reference 1), it 1s desirable to keep A to a minimum throughout the
maneuver .

In order to evaluate the effects of rate of pitch reduction and
moment of inertia in this regard, figures 7 and 8 are presented. The
golid lines represent boumdaries determined from reference 1, figure 3.
For any value of 6, the point on the boungary was determined by the

value of A at which the difference in ——g due to neglecting blade

stalling was 0.0015. Thus the boundaries shown indicate, for any value
of 0, an arbltrary limit for A\, above which blade stalling should be
accounted for in equations (lQa) and (13a). The broken curves are the
loci of combinations of A and 6 computed during the maneuvers
considered in the study of the sample design. As can be seen from the
figures, all the cases computed lie within the range of )\ and 0
where blade stalling can be neglected, as has been done in the ANALYSTS.

. From figure 7, the advantage of a rapid pitch reduction is apparent,
for keeping A to a minimum throughout the maneuver, and hence in
avoiding the instability of excessive blade stalling. From figure 8, a
gimilar advantage for large blade moment of Inertia is to be noted.

For larger initial blade angles in hovering than considered here,
the maneuver can only be investigated by accounting for blade stalling,
and then only with grave reservations because of the assumption of
constent induced velocity, which assumption was shown in reference 1
to be severe in cases where blade stalling is important. It can, however,
be anticipated that, in this case, the importance of rapid rate of pitch
reduction and large blade moment of inertia would be greatly magnified.

Descending Velocity against Altitude Lost
Figures 9 and 10 show descending veloclty against altitude lost

during the maneuvers investigated. Altitude lost is obtained by
graphical integration of the curves of V(t), figures 5 and 6. The
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average drop required to effect the transition, for the cases considered,
is seen to be about 120 feet. '

The effect of rate of pitch change on descending velocity at a
given amount of altlitude lost, from figure 9, is apparently small. This
conclusion 1is obviously limited to cases where the hovering incidence is
within the range for steady autorotation. If 90 were greater than the

maximum for steady autorotation (reference 1, fig. 3), then obviously
the pitch would have to be reduced rapidly to avoild the instability
caused by excessive blade stalling.

From figure 10, the advantage of a large blade moment of Inertia, in
preserving a minimum descending veloclity for a given altitude lost, is
readily apparent.

CONCLUSIONS

Analytical methods are given for treating the transient motion of
a helicopter between the hovering state and the steady sutorotative
state of vertical descent. From the standpoint of avoiding blade
stalling in the transition, it 1s desirable to reduce pitch rapidly and
to have a large bplade moment of inertia.

The effects of hinging the blades, for a glven net rate of pitch
reduction after power fallure, appear to be negligible.

The average time to effect the transition from hovering to steady
autorotation is about 6 seconds, for the cases investigated. The
corresponding average altlitude lost in the transition is about 120 feet.

Princeton University
Princeton, N. J., May 12, 1948
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i —

——————— Instantaneous
—— — —Exponential (moderate)
Exponential (slow)
-- No pitch change

Descending velocity, V, ft/sec

‘Type of pitch change

® Instantaneous (flapping considered)

_ -
4 6 8 10
Time after power failure, sec
S 30
&
[3)
33
>3 e p—
g 5
BS - ———
58
&~ . .
Q VW
2 10
0 2 4 6 8 10

Time after power failure, sec

Figure 1.~ Effect of rate of pitch reduction on the variations of descending
velocity and rotor angular velocity with time after power failure. Flapping

neglected except as noted, I = 200 s'lug-feetz.
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8
| |
I g No pitch change
<Exponentia1 (slow)
6
N\ - Exponential (moderate)

Y
N\ \
_-_Z__-..L. _____ ) _.:}-— I—
Instantaneous

o= met———

Angle of incidence, o, deg
N

9 : SNACA
0 2 4 6 8 10
Time after power failure, sec

Figure 2.- Types of pitch change considered.
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1) 30 1 T

o k = 1.0; no pitch charnige 2

E —_:'_"44:':--

> :

> 20

'g Pitch change to 4°

2 k = 1,0

"?)) ——————— k o= o

2 10

kS
0 2 4 6

Time after power failure, sec

10

-Figﬁre 3.- Assumed variations of induced velocity with time after power

failure,
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40

Descending velocity, V, ft/sec

20
Induced velocity

k=10

k = [+ ]
10

-
0 4 6 5 10
Time after power failure, sec

- 30

radians/sec
Do
(@]

0 2 4 6 8 10
Time after power failure, sec

Rotor angular velocity, g,

-t
O

Figure 4,- Effect of two different assumptions for induced velocity against
time on the variations of descending velocity and rotor angular velocity

with time after power failure, v = vy + (VO - vf)e_kt. (See fig. 3.)
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oy /--
9 P
3 .~ ®-No pitch change
o yd
o F Slow exponential
'gb o S S S T SR ]
o
« -
bo -
E 6 [ Moderate exponential
o ' ,'
1]
= i 7 Klnstantaneous
[y I,
2
0 2 4 6 8 10
Time after power failure, sec
18
foee—"TC I, = 100 slug-ft2
/’
o 14 —
Q)- o L
- .
o
g
%’ 10 5
& I L = 200 slug-ft
ord
g, -
3
\Lt' 6
(11 = 400 slug-ft2
" ) i _
2

0 2 4 6 8 10
Time after power failure, sec

Figure 5.- Effects of rate of pitch reduction and blade moment of inertia
on the variation of flapping angle with time after power failure.
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Rotor angular velocity, q,
radians/sec

Descending velocity, V, ft/sec

40

&

[N
(@

10

[$v)
O

20

ot
(o)

/ -
~ ~ _____\-—‘-
// / /< -
/ /
/ ’
/ /
/
/
/
/
Moment of inertia, Il
(slug-ft2)
————— 100
200
—-—400
2 4 6 8 10

Time after power failure, sec

S~ ‘
\ Tt T Aﬂ‘ ===
\\\\'_—{:/
\\\_’ //
2 4 6 8 10

Time after power failure, sec

Figure 6,- Effect of blade moment of inertia on the variations of descending

velocity and rotor angular velocity with time after power failure. Slow
exponential pitch change (fig. 2).
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.10 |
Rate of pitch reduction
------ Instantaneous
08 - —— - —— Exponential (moderate)

Exponential (slow)
——-- — No pitch change

.06 % Blade stalling should be

considered above

~ this boundary
&
S %’
g Q“‘%%
=04 &
3 ‘QQ%
S 3
g |
02 \ 7N W
\
R
|
i
. | .
0 = H |
0 2 4 6 8 10

Angle of incidence, o, deg

Figure 7.- Effect of rate of pitch reductionon A against e throughout the
transition maneuver. Iy = 200 slug-feetz.
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.08
Blade stalling should be
considered above
this boundary
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Figure 8.- Effect of blade moment of inertia on N\ against ¢ throughout the
transition maneuver., Slow exponential pitch change._
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Figure 9.~ Effect of rate of pitch reduction on descending velocity against
altitude lost, I, = 200 slug ~feet?,
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Figure 10,- Effect of blade moment of inertia on descending velocity against
altitude lost. Slow exponential piich change,



